使用 Databend Kafka Connect 构建实时数据同步
hatmac10月 9, 2023
Kafka Connect 介绍
Kafka Connect 是一个用于在 Apache Kafka® 和其他数据系统之间可扩展且可靠地流式传输数据的工具。通过将数据移入和移出 Kafka 进行标准化,使得快速定义连接器以在 Kafka 中传输大型数据集变得简单,可以更轻松地构建大规模的实时数据管道。
我们使用 Kafka Connector 读取或写入外部系统、管理数据流以及扩展系统,所有这些都无需开发新代码。Kafka Connect 管理与其他系统连接时的所有常见问题(Schema 管理、容错、并行性、延迟、投递语义等),每个 Connector 只关注如何在目标系统和 Kafka 之间复制数据。
Kafka 连接器通常用来构建 data pipeline,一般有两种使用场景:
-
开始和结束的端点: 例如,将 Kafka 中的数据导出到 Databend 数据库,或者把 Mysql 数据库中的数据导入 Kafka 中。
-
数据传输的中间媒介: 例如,为了把海量的日志数据存储到 Elasticsearch 中,可以先把这些日志数据传输到 Kafka 中,然后再从 Kafka 中将这些数据导入到 Elasticsearch 中进行存储。Kafka 连接器可以作为数据管道各个阶段的缓冲区,将消费者程序和生产者程序有效地进行解耦。
Kafka Connect 分为两种:
- Source Connect: 负责将数据导入 Kafka。
- Sink Connect: 负责将数据从 Kafka 系统中导出到目标表。
Databend Kafka Connect
Kafka 目前在 Confluent Hub 上提供了上百种 Connector,比如 Elasticsearch Service Sink Connector, Amazon Sink Connector, HDFS Sink 等,用户可以使用这些 Connector 以 Kafka 为中心构建任意系统之间的数据管道。现在我们也为 Databend 提供了 Kafka Connect Sink Plugin,这篇文章我们将会介绍如何使用 MySQL JDBC Source Connector 和 Databend Sink Connector 构建实时的数据同步管道。
启动 Kafka Connect
本文假定操作的机器上已经安装 Apache Kafka,如果用户还没有安装,可以参考 Kafka quickstart 进行安装。
Kafka Connect 目前支持两种执行模式:Standalone 模式和分布式模式。
启动模式
Standalone 模式
在 Standalone 模式下,所有的工作都在单个进程中完成。这种模式更容易配置以及入门,但不能充分利用 Kafka Connect 的某些重要功能,例如,容错。我们可以使用如下命令启动 Standalone 进程:
bin/connect-standalone.sh config/connect-standalone.properties connector1.properties [connector2.properties ...]
第一个参数 config/connect-standalone.properties 是 worker 的配置。这其中包括 Kafka 连接参数、序列化格式以及提交 Offset 的频率等配置:
bootstrap.servers=localhost:9092
key.converter.schemas.enable=true
value.converter.schemas.enable=true
offset.storage.file.filename=/tmp/connect.offsets
offset.flush.interval.ms=10000
后面的配置是指定要启动的 Connector 的参数。上述提供的默认配置适用于使用 config/server.properties 提供的默认配置运行的本地集群。如果使用不同配置或者在生产部署,那就需要对默认配置做调整。但无论怎样,所有 Worker(独立的和分布式的)都需要一些配置:
-
bootstrap.servers: 该参数列出了将要与 Connect 协同工作的 broker 服务器,Connector 将会向这些 broker 写入数据或者从它们那里读取数据。你不需要指定集群的所有 broker,但是建议至少指定 3 个。
-
key.converter 和 value.converter: 分别指定了消息键和消息值所使用的的转换器,用于在 Kafka Connect 格式和写入 Kafka 的序列化格式之间进行转换。这控制了写入 Kafka 或从 Kafka 读取的消息中键和值的格式。由于这与 Connector 没有任何关系,因此任何 Connector 可以与任何序列化格式一起使用。默认使用 Kafka 提供的 JSONConverter。有些转换器还包含了特定的配置参数。例如,通过将 key.converter.schemas.enable 设置成 true 或者 false 来指定 JSON 消息是否包含 schema。
-
offset.storage.file.filename: 用于存储 Offset 数据的文件。
这些配置参数可以让 Kafka Connect 的生产者和消费者访问配置、Offset 和状态 Topic。配置 Kafka Source 任务使用的生产者和 Kafka Sink 任务使用的消费者,可以使用相同的参数,但需要分别加上‘producer.’和‘consumer.’前缀。bootstrap.servers 是唯一不需要添加前缀的 Kafka 客户端参数。
distributed 模 式
分布式模式可以自动平衡工作负载,并可以动态扩展(或缩减)以及提供容错。分布式模式的执行与 Standalone 模式非常相似:
bin/connect-distributed.sh config/connect-distributed.properties
不同之处在于启动的脚本以及配置参数。在分布式模式下,使用 connect-distributed.sh 来代替 connect-standalone.sh。第一个 worker 配置参数使用的是 config/connect-distributed.properties 配置文件:
bootstrap.servers=localhost:9092
group.id=connect-cluster
key.converter.schemas.enable=true
value.converter.schemas.enable=true
offset.storage.topic=connect-offsets
offset.storage.replication.factor=1
#offset.storage.partitions=25
config.storage.topic=connect-configs
config.storage.replication.factor=1
status.storage.topic=connect-status
status.storage.replication.factor=1
#status.storage.partitions=5
offset.flush.interval.ms=10000
Kafka Connect 将 Offset、配置以及任务状态存储在 Kafka Topic 中。建议手动创建 Offset、配置和状态的 Topic,以达到所需的分区数和复制因子。如果在启动 Kafka Connect 时尚未创建 Topic,将使用默认分区数和复制因子来自动创建 Topic,这可能不适合我们的应用。在启动集群之前配置如下参数至关重要:
-
group.id: Connect 集群的唯一名称,默认为 connect-cluster。具有相同 group id 的 worker 属于同一个 Connect 集群。需要注意的是这不能与消费者组 ID 冲突。
-
config.storage.topic: 用于存储 Connector 和任务配置的 Topic,默认为 connect-configs。需要注意的是这是一个只有一个分区、高度复制、压缩的 Topic。我们可能需要手动创建 Topic 以确保配置的正确,因为自动创建的 Topic 可能有多个分区或自动配置为删除而不是压缩。
-
offset.storage.topic: 用于存储 Offset 的 Topic,默认为 connect-offsets。这个 Topic 可以有多个分区。
-
status.storage.topic: 用于存储状态的 Topic,默认为 connect-status。这个 Topic 可以有多个分区。
需要注意的是在分布式模式下需要通过 rest api 来管理 Connector。
比如:
GET /connectors – 返回所有正在运行的connector名。
POST /connectors – 新建一个connector; 请求体必须是json格式并且需要包含name字段和config字段,name是connector的名字,config是json格式,必须包含你的connector的配置信息。
GET /connectors/{name} – 获取指定connetor的信息。
GET /connectors/{name}/config – 获取指定connector的配置信息。
PUT /connectors/{name}/config – 更新指定connector的配置信息。
配置 Connector
MySQL Source Connector
- 安装 MySQL Source Connector Plugin
这里我们使用 Confluent 提供的 JDBC Source Connector。
从 Confluent hub 下载 Kafka Connect JDBC 插件并将 zip 文件解压到 /path/kafka/libs 目录下。
- 安装 MySQL JDBC Driver
因为 Connector 需要与数据库进行通信,所以还需要 JDBC 驱动程序。JDBC Connector 插件也没有内置 MySQL 驱动程序,需要我们单独下载驱动程序。MySQL 为许多平台提供了 JDBC 驱动程序。选择 Platform Independent 选项,然后下载压缩的 TAR 文件。该文件包含 JAR 文件和源代码。将此 tar.gz 文件的内容解压到一个临时目录。将 jar 文件(例如,mysql-connector-java-8.0.17.jar),并且仅将此 JAR 文件复制到与 kafka-connect-jdbc jar 文件相同的
libs
cp mysql-connector-j-8.0.32.jar /opt/homebrew/Cellar/kafka/3.4.0/libexec/libs/
- 配置 MySQL Connector
在
/path/kafka/config
mysql.properties
name=test-source-mysql-autoincrement
connector.class=io.confluent.connect.jdbc.JdbcSourceConnector
tasks.max=1
connection.url=jdbc:mysql://localhost:3306/mydb?useSSL=false
connection.user=root
connection.password=123456
#mode=timestamp+incrementing
mode=incrementing
table.whitelist=mydb.test_kafka
poll.interval.ms=1000
table.poll.interval.ms=3000
incrementing.column.name=id
#timestamp.column.name=tms
topics=test_kafka
针对配置我们这里重点介绍
mode
incrementing.column.name
timestamp.column.name
- incrementing
- timestamp
- timestamp+incrementing
- 在 incrementing 模式下,每次都是根据 incrementing.column.name 参数指定的列,查询大于自上次拉取的最大 id:
SELECT * FROM mydb.test_kafka
WHERE id > ?
ORDER BY id ASC
这种模式的缺点是无法捕获行上更新操作(例如,UPDATE、DELETE)的变更,因为无法增大该行的 id。
- timestamp 模式基于表上时间戳列来检测是否是新行或者修改的行。该列最好是随着每次写入而更新,并且值是单调递增的。需要使用 timestamp.column.name 参数指定时间戳列。
需要注意的是时间戳列在数据表中不能设置为 Nullable.
在 timestamp 模式下,每次都是根据 timestamp.column.name 参数指定的列,查询大于自上次拉取成功的 gmt_modified:
SELECT * FROM mydb.test_kafka
WHERE tms > ? AND tms < ?
ORDER BY tms ASC
这种模式可以捕获行上 UPDATE 变更,缺点是可能造成数据的丢失。由于时间戳列不是唯一列字段,可能存在相同时间戳的两列或者多列,假设在导入第二条的过程中发生了崩溃,在恢复重新导入时,拥有相同时间戳的第二条以及后面几条数据都会丢失。这是因为第一条导入成功后,对应的时间戳会被记录已成功消费,恢复后会从大于该时间戳的记录开始同步。此外,也需要确保时间戳列是随着时间递增的,如果人为的修改时间戳列小于当前同步成功的最大时间戳,也会导致该变更不能同步。
- 仅使用 incrementing 或 timestamp 模式都存在缺陷。将 timestamp 和 incrementing 一起使用,可以充分利用 incrementing 模式不丢失数据的优点以及 timestamp 模式捕获更新操作变更的优点。需要使用
incrementing.column.name